JCR-Role of SNPs in determining QTLs for major traits in cotton

Abstract: A single nucleotide polymorphism is the simplest form of genetic variation among individuals and can induce minor changes in phenotypic, physiological and biochemical characteristics. This polymorphism induces various mutations that alter the sequence of a gene which can lead to observed changes in amino acids. Several assays have been developed for identification and validation of these markers. Each method has its own advantages and disadvantages but genotyping by sequencing is the most common and most widely used assay. These markers are also associated with several desirable traits like yield, fibre quality, boll size and genes respond to biotic and abiotic stresses in cotton. Changes in yield related traits are of interest to plant breeders. Numerous quantitative trait loci with novel functions have been identified in cotton by using these markers. This information can be used for crop improvement through molecular breeding approaches. In this review, we discuss the identification of these markers and their effects on gene function of economically important traits in cotton.

Keywords: Abiotic stresses, Biotic stresses, Cotton, Earliness, Genotyping by sequencing

 

Role of SNPs in determining QTLs for major traits in cotton

MAJEED Sajid, RANA Iqrar Ahmad, ATIF Rana Muhammad, ALI Zulfiqar, HINZE Lori  and AZHAR Muhammad Tehseen

Journal of Cotton Research. 2019; 2:5

https://doi.org/10.1186/s42397-019-0022-5

https://jcottonres.biomedcentral.com/articles/10.1186/s42397-019-0022-5

Effects of NaCl stress on the biochemical substances in Bt cotton as well as on the growth and development and adult oviposition selectivity of Helicoverpa armigera

Background

Recently, due to the development of food security strategies, cotton has been planted in inland saline-alkali dry soils or in coastal some saline-alkali soils in China. Under the condition, to comprehensively prevent and control Helicoverpa armigera in cotton fields with saline-alkali soils, it is important to study the larval growth and development of H. armigera and to study adult oviposition selectivity in H. armigera adults that feed on NaCl-stressed cotton plants.

Results

In this study, Bt cotton GK19 was used for the experimental group and its nontransgenic parent Simian 3 was used for the control to study the effects of biochemical substances in cotton as well as larval growth and development and adult oviposition selectivity of H. armigera. The experiments were performed by growing cotton indoors under NaCl stress at concentrations of 0 mmol·L− 1, 75 mmol·L− 1 and 150 mmol·L− 1, respectively. The results showed that the expression of Bt protein was significantly inhibited for NaCl-stressed Bt cotton. The content of soluble protein and K+ in the leaves of cotton were decreased, while the content of gossypol and Na+ were increased. In addition, the 5th instar H. armigera larvae exhibited shorten the life span in a 13-day trial period. Under enclosure treatments and at different female densities, the adult oviposition of H. armigera decreased on high NaCl-stressed nontransgenic cotton, while the oviposition on Bt cotton tended to first increase but then decrease under low, moderate and high NaCl stress treatments.

Conclusions

Under certain content ranges of NaCl stress treatments, larval of H. armigera growth and development, and adult oviposition were no significant difference in the change for a certain period. However, under high NaCl stress, larval growth, development and adult oviposition were affected, which may provide insights for the prevention and control of H. armigera for Bt cotton in saline-alkali soils.

 

Effects of NaCl stress on the biochemical substances in Bt cotton as well as on the growth and development and adult oviposition selectivity of Helicoverpa armigera

LUO Junyu, ZHANG Shuai, ZHU Xiangzhen, JI Jichao, ZHANG Kaixin, WANG Chunyi, ZHANG Lijuan, WANG Li and CUI Jiniie

Journal of Cotton Research. 2019; 2:4

https://doi.org/10.1186/s42397-019-0020-7

 

https://jcottonres.biomedcentral.com/articles/10.1186/s42397-019-0020-7

JCR-Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses

Background

INDETERMINATE DOMAIN (IDD) transcription factors form one of the largest and most conserved gene families in plant kingdom and play important roles in various processes of plant growth and development, such as flower induction in term of flowering control. Till date, systematic and functional analysis of IDDgenes remained infancy in cotton.

Results

In this study, we identified total of 162 IDD genes from eight different plant species including 65 IDD genes in Gossypium hirsutum. Phylogenetic analysis divided IDDs genes into seven well distinct groups. The gene structures and conserved motifs of GhIDD genes depicted highly conserved exon-intron and protein motif distribution patterns. Gene duplication analysis revealed that among 142 orthologous gene pairs, 54 pairs have been derived by segmental duplication events and four pairs by tandem duplication events. Further, Ka/Ksvalues of most of orthologous/paralogous gene pairs were less than one suggested the purifying selection pressure during evolution. Spatiotemporal expression pattern by qRT-PCR revealed that most of the investigated GhIDD genes showed higher transcript levels in ovule of seven days post anthesis, and upregulated response under the treatments of multiple abiotic stresses.

Conclusions

Evolutionary analysis revealed that IDD gene family was highly conserved in plant during the rapid phase of evolution. Whole genome duplication, segmental as well as tandem duplication significantly contributed to the expansion of IDDgene family in upland cotton. Some distinct genes evolved into special subfamily and indicated potential role in the allotetraploidy Gossypium hisutum evolution and development. High transcript levels of GhIDD genes in ovules illustrated their potential roles in seed and fiber development. Further, upregulated responses of GhIDD genes under the treatments of various abiotic stresses suggested them as important genetic regulators to improve stress resistance in cotton breeding.

Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses

ALI Faiza, QANMBER Ghulam, LI Yonghui, MA Shuya, LU Lili, YANG Zuoren, WANG Zhi and LI Fuguang

Journal of Cotton Research 2019 2:3

https://jcottonres.biomedcentral.com/articles/10.1186/s42397-019-0021-6

Isolation and characterization of the GbVIP1gene and response to Verticillium wilt in cotton and tobacco

Isolation and characterization of the GbVIP1gene and response to Verticillium wilt in cotton and tobacco

  • ZHANG Kai ,
  • ZHAO Pei ,
  • WANG Hongmei Email author,
  • ZHAO Yunlei ,
  • CHEN Wei ,
  • GONG Haiyan ,
  • SANG Xiaohui  and
  • CUI Yanli 
Contributed equally
Journal of Cotton Research20192:2

https://doi.org/10.1186/s42397-019-0019-0

Abstract

Background

Verticillium wilt is a serious soil-borne vascular disease that causes major losses to upland cotton (Gossypium hirutum L.) worldwidely every year. The protein VIP1 (VirE2 interaction protein 1), a bZIP transcription factor, is involved in plant response to many stress conditions, especially pathogenic bacteria. However, its roles in cotton response to Verticillium wilt are poorly understood.

Results

The GbVIP1 gene was cloned from resistant sea-island cotton (G. barbadense) cv. Hai 7124. Expression of GbVIP1 was up-regulated by inoculation with Verticillium dahliae and exogenous treatment with ethylene. Results of virus-induced gene silencing suggested that silencing of GbVIP1 weakened cotton resistance to Verticillium wilt. The heterologous expression of GbVIP1 in tobacco showed enhanced resistance to Verticillium wilt. The PR1, PR1-like and HSP70 genes were up-regulated in GbVIP1 transgenic tobacco after Verticillium wilt infection.

Conclusion

Our results suggested that GbVIP1 increased plant resistance to Verticillium wilt through up-regulating expressions of PR1, PR1-like, and HSP70. These results provide new approaches to improving resistance to Verticillium wilt in upland cotton and also have great potential for disease-resistance breeding of cotton.

Keywords

  • Cotton
  • VIP1
  • Verticillium wilt

https://jcottonres.biomedcentral.com/articles/10.1186/s42397-019-0019-0

JCR-Functional Genomics and Biotechnology Thematic Series Call for Paper

Journal of Cotton Research

Functional Genomics and Biotechnology

Thematic Series Call for Paper

Coordinators:
Professor Fuguang LI, Institute of Cotton Research, CAAS, China
Dr. Zuoren YANG, Institute of Cotton Research, CAAS, China

Remarkable advances have been made in cotton functional genomics and biotechnology, though more findings are expected in most fields in functional genomics. Journal of Cotton Research is hosting a thematic series on Functional genomics and biotechnology. The research community is encouraged to share original findings, methodology, results, databases, and/or software and opinions.

Scopes that may be covered in the submissions may include, but are not limited to the following:

1. Quantitative trait loci/genes related to fiber quality, yield or stress-resistance from different Gossypium species;
2. Gene regulatory network;
3. Genome editing (Focusing on CRISPR/Cas9 system);
4. Bioinformatics: Tools, software and database, etc;
5. Cotton genetic improvement.

Submission Deadline: 31 August 2019

https://jcottonres.biomedcentral.com/cottonfgb

JCR-Cotton High Speed Phenotyping Thematic Series Call For Paper

Journal of Cotton Research

Cotton High Speed Phenotyping

Thematic Series Call For Paper

Coordinator: Professor Eric F. Hequet, Texas Tech University, USA; Dr. Glen Ritchie, Texas Tech University, USA

High speed phenotyping is critical to improve cotton research and production. It can be applied to large scale commercial fields, research fields, breeding lines, and even at the individual plant level. The main goals are to improve yield, fiber quality, stress and disease resistance, etc… Recently, advances in high speed phenotyping in cotton have been achieved. The Journal of Cotton Research is hosting a thematic series on this topic. The research community is encouraged to share original findings, methodology, results, databases, and/or software and opinions.

Scopes that may be covered in the submissions may include, but are not limited to the following:
1. Platform design: air-based and/or land-based;
2. Data capture and processing: sensors (RGB, IR, multispectral, sonic, etc.), integration of multiple sensors, information processing technologies;
3. Data analysis and Metadata: analysis of very large data sets, validation with ground truth, practical application examples (breeding programs, site specific irrigation scheduling, etc.).

Submission Deadline: April 30, 2019

https://jcottonres.biomedcentral.com/cottonhsp