JCR-Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses

Background

INDETERMINATE DOMAIN (IDD) transcription factors form one of the largest and most conserved gene families in plant kingdom and play important roles in various processes of plant growth and development, such as flower induction in term of flowering control. Till date, systematic and functional analysis of IDDgenes remained infancy in cotton.

Results

In this study, we identified total of 162 IDD genes from eight different plant species including 65 IDD genes in Gossypium hirsutum. Phylogenetic analysis divided IDDs genes into seven well distinct groups. The gene structures and conserved motifs of GhIDD genes depicted highly conserved exon-intron and protein motif distribution patterns. Gene duplication analysis revealed that among 142 orthologous gene pairs, 54 pairs have been derived by segmental duplication events and four pairs by tandem duplication events. Further, Ka/Ksvalues of most of orthologous/paralogous gene pairs were less than one suggested the purifying selection pressure during evolution. Spatiotemporal expression pattern by qRT-PCR revealed that most of the investigated GhIDD genes showed higher transcript levels in ovule of seven days post anthesis, and upregulated response under the treatments of multiple abiotic stresses.

Conclusions

Evolutionary analysis revealed that IDD gene family was highly conserved in plant during the rapid phase of evolution. Whole genome duplication, segmental as well as tandem duplication significantly contributed to the expansion of IDDgene family in upland cotton. Some distinct genes evolved into special subfamily and indicated potential role in the allotetraploidy Gossypium hisutum evolution and development. High transcript levels of GhIDD genes in ovules illustrated their potential roles in seed and fiber development. Further, upregulated responses of GhIDD genes under the treatments of various abiotic stresses suggested them as important genetic regulators to improve stress resistance in cotton breeding.

Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses

ALI Faiza, QANMBER Ghulam, LI Yonghui, MA Shuya, LU Lili, YANG Zuoren, WANG Zhi and LI Fuguang

Journal of Cotton Research 2019 2:3

https://jcottonres.biomedcentral.com/articles/10.1186/s42397-019-0021-6

Genetics and Improvement of Lint Characters in Naturally Coloured Cotton

ABSTRACT
A genetic improvement programme for coloured lint in G. hirsutum L. has been initiated Cyclic crosses were made in two sets: Set 1 included LRA 5166 (white), Khaki American (brown) and Arkansas Green (green) parents. Six generations viz. P1, P2, F1, F2, BC1 and BC2 were studied. There exists multiple allelic series of Lcb (brown), Lcg (green) and fc (grey) for seed fuzz colour. The red stem colour (R) was completely dominant over green stem (r). There was linkage between the three genes controlling lint colour (Lc) seed fuzz colour (Fc) and stem colour (R) with mean cross over values 10.1, 25.8 and 35.3 in set 1 and 9.9, 29.3 and 33.4 in set II respectively. Estimation of gene effects revealed importance of both additive and dominance gene affects and involvement of duplicate epistasis in the control of most of the characters. Selections having brown and green lint colour have been made in F2 and back cross generations for larger boll size, medium to long staple length and high strength.

Back to Table of contents

Path Coefficient Analysis in Half Diallal Hybrids of some Glandless Cotton Cultivars (Gossypium hirsutum L.)

ABSTRACT
This study was carried out in 1992-93 in the Cukurova and South Eastern Anatolian Project (GAP) region to determine relationships between important agronomic and fiber characteristics in a population that contained parents and half diallel hybrids of ten glandless cotton cultivars. For characters that gave significant correlations with seed cotton yield, direct and indirect relationships were determined using path coefficient analysis. In the Cukurova region, the direct effect of plant height on the seed cotton yield was 63.6%, of boll weight 33% and of seed cotton weight per boll 51.3%. While the direct effect of fiber length on seed cotton yield was 16.5%, its indirect effect through seed cotton weight per boll was 41.8%. Similarly, in the GAP region, the direct effect of plant height on the seed cotton yield was 87.5% and of seed protein percentage 88.2%. While the direct effect of boll number on seed cotton yield was 5%, its indirect effect on plant height was 76%.

Back to Table of contents

Evaluation of genetic diversity in short duration cotton (Gossypium hirsutum L.)

[Background] Cotton (Gossypium hirsutum L.) is an important fiber crop in Bangladesh. Genetic diversity among the genotypes of a germplasm has a great importance for cotton breeding. An experiment was carried out at the experimental field of Cotton Research, Training and Seed Multiplication Farm, Sreepur, Gazipur during the cropping season of 2015–2016 with 100 genotypes to evaluate genetic diversity of cotton genotypes for short duration using field performance.

[Results] The genotypes under study were grouped into ten clusters through multivariate analysis using GENSTAT-5. Cluster III contained maximum number of genotypes (16) while cluster X contained the least number of genotypes (7). The inter cluster distances were larger than intra cluster distances in all cases suggesting wider genetic diversity among the genotypes of different clusters. The maximum and minimum inter cluster distances were observed between clusters II and V (10.78) and clusters VIII and IX (3.30), respectively. The results indicated diverse and close relationship among the genotypes of those clusters. Earliness index, single boll weight and days to boll opening showed the higher contribution to the genetic divergence among 19 characters.

[Conclusion] Based on the results of genetic diversity and earliness index, the genotypes from cluster II could be used as parent in hybridization program for the development of short duration cotton variety.

Evaluation of genetic diversity in short duration cotton (Gossypium hirsutum L.)

AKTER T., ISLAM A. K. M. A., RASUL M. G., KUNDU S., KHALEQUZZAMAN and AHMED J. U.
Journal of Cotton Research. 2019; 2:1.
https://doi.org/10.1186/s42397-018-0018-6

Irrigation’s effect and applied selection on the fiber quality of Ethyl MethaneSulfonate (EMS) treated upland cotton (Gossypium hirsutum L.)

[Background] Producing rainfed cotton (Gossypium hirsutum L.) with high fiber quality has been challenging in the Texas High Plains because of extended periods of insufficient rainfall during sensitive boll developmental stages. Genetic variation created by Ethyl MethaneSulfonate (EMS) mutagen has successfully improved fiber quality of cotton. However, little is known about the effect of water deficit environments on fiber quality. Three EMS treated populations were advanced from the first to the fourth generation (M1 to M4) as bulk harvested populations. In 2014, single-plant divergent selection was applied based on perceived morphological and agronomic differences seen during and at the end of the season.

[Results] Analyses from these selections in 2014–2016 showed significant (P < 0.05) improvement between and within populations for fiber traits (micronaire, length, strength, uniformity, and elongation) when compared with the original non-treated EMS source; some selections were found to have excellent fiber quality under diverse irrigation-regimes.

[Conclusions] Some of these selections are being considered for germplasm release and could be useful for improving the fiber quality of cotton under water limited conditions, thereby helping to ensure the long-term survival of the cotton industry on the Texas High Plains.

Irrigation’s effect and applied selection on the fiber quality of Ethyl MethaneSulfonate (EMS) treated upland cotton (Gossypium hirsutum L.)
WITT Travis W. , ULLOA Mauricio, PELLETIER Mathew G. , MENDU Venugopal and RITCHIE Glen L.
Journal of Cotton Research. 2018; 1:17.
https://jcottonres.biomedcentral.com/articles/10.1186/s42397-018-0016-8

JCR-Cotton High Speed Phenotyping Thematic Series Call For Paper

Journal of Cotton Research

Cotton High Speed Phenotyping
Thematic Series Call For Paper
Coordinator: Professor Eric F. Hequet, Texas Tech University, USA; Dr. Glen Ritchie, Texas Tech University, USA

Author’s allowance: The sponsor, Institute of Cotton Research, CAAS, grants to cover not only APC for the submission, but also the author’s allowance once published.

High speed phenotyping is critical to improve cotton research and production. It can be applied to large scale commercial fields, research fields, breeding lines, and even at the individual plant level. The main goals are to improve yield, fiber quality, stress and disease resistance, etc… Recently, advances in high speed phenotyping in cotton have been achieved. The Journal of Cotton Research is hosting a thematic series on this topic. The research community is encouraged to share original findings, methodology, results, databases, and/or software and opinions.

Scopes that may be covered in the submissions may include, but are not limited to the following:
1. Platform design: air-based and/or land-based;
2. Data capture and processing: sensors (RGB, IR, multispectral, sonic, etc.), integration of multiple sensors, information processing technologies;
3. Data analysis and Metadata: analysis of very large data sets, validation with ground truth, practical application examples (breeding programs, site specific irrigation scheduling, etc.).

Submission Deadline: April 30, 2019

https://jcottonres.biomedcentral.com/cottonhsp

Genetic diversity and population structure of Gossypium arboreum L. collected in China

[Background] Gossypium arboreum is a diploid species cultivated in the Old World. It possesses favorable characters that are valuable for developing superior cotton cultivars.

[Method] A set of 197 Gossypium arboreum accessions were genotyped using 80 genome-wide SSR markers to establish patterns of the genetic diversity and population structure. These accessions were collected from three major G. arboreum growing areas in China. A total of 255 alleles across 80 markers were identified in the genetic diversity analysis.

[Results] Three subgroups were found using the population structure analysis, corresponding to the Yangtze River Valley, North China, and Southwest China zones of G. arboreum growing areas in China. Average genetic distance and Polymorphic information content value of G. arboreum population were 0.34 and 0.47, respectively, indicating high genetic diversity in the G. arboreum germplasm pool. The Phylogenetic analysis results concurred with the subgroups identified by Structure analysis with a few exceptions. Variations among and within three groups were observed to be 13.61% and 86.39%, respectively.

[Conclusion] The information regarding genetic diversity and population structure from this study is useful for genetic and genomic analysis and systematic utilization of economically important traits in G. arboreum.

Genetic diversity and population structure of Gossypium arboreum L. collected in China
JIA Yinhua, PAN Zhaoe, HE Shoupu, GONG Wenfang, GENG Xiaoli, PANG Baoyin, WANG Liru and DU Xiongming
Journal of Cotton Research. 2018; 1:11.
https://doi.org/10.1186/s42397-018-0011-0

Map-based cloning of a recessive gene v1 for virescent leaf expression in cotton (Gossypium spp.)

[Background] Virescence, as a recognizable phenotype in the early development stage of cotton, is not only available for research on chloroplast development and photosynthesis but also for heterosis exploitation in cotton.

[Methods] In current study, for fine mapping of virescent-1 (v1) in cotton, three populations with a total of 5 678 individuals were constructed using T582 which has the virescent trait. Tobacco rattle virus, TRV1 and TRV2 (pYL156), were used as vectors for the virus-induced gene silencing (VIGS) assay.

[Results] The v1 gene was fine-mapped to a 20 kb interval on chromosome 20 of tetraploid cotton. We identified only one candidate gene with four single nucleotide polymorphisms between parents, among which the single nucleotide polymorphism at the position of 1 082 base pair caused the change of amino acid residue from Arg (3–79) to Lys (T582). The relative expression of the candidate gene in virescent plants was extensively lower than that in normal plants. Nullification of the gene by VIGS significantly turned the green leaf of normal cotton plants into yellow. We named this candidate gene as GhRVL.

[Conclusions] This study will facilitate the further research on virescent formation, and will be useful for breeding of hybrid cottons.

Map-based cloning of a recessive gene v1 for virescent leaf expression in cotton (Gossypium spp.)
ZHANG Youping, WANG Qiaolian, ZUO Dongyun, CHENG Hailiang, LIU Ke, ASHRAF Javaria, LI Simin, FENG Xiaoxu, YU John Z. and SONG Guoli
Journal of Cotton Research. 2018; 1:10.
https://doi.org/10.1186/s42397-018-0009-7

Analysis of short fruiting branch gene and Marker-assisted selection with SNP linked to its trait in upland cotton

[Background] With the rapid development of genomics, many functional genes have been targeted. Molecular marker assisted selection can accelerate the breeding process by linking selection to functional genes.

[Methods] In a study of upland cotton (Gossypium hirsutum L.), the F2 segregated population was constructed by crossing X1570 (short branches) with Ekangmian-13 (long branches) to identify the short fruiting branch gene and marker-assisted selection with SNP(Single Nucleotide Polymorphisms, SNP) linked to its trait.

[Result] The result demonstrated that linked SSR marker BNL3232 was screened by BSA(Bulked segregant analysis, BSA) method; one SNP locus was found, which was totally separated from the fruiting branches trait in upland cotton.

[Conclusion] It was verified that this SNP marker could be used for molecular assisted selection of cotton architecture.

Analysis of short fruiting branch gene and Marker-assisted selection with SNP linked to its trait in upland cotton
ZHANG Youchang, FENG Changhui, BIE Shu, WANG Xiaogang, ZHANG Jiaohai, XIA Songbo and QIN Hongde
Journal of Cotton Research. 2018; 1:5.
https://doi.org/10.1186/s42397-018-0001-2

Designations for individual genomes and chromosomes in Gossypium

Gossypium, as the one of the biggest genera, the most diversity, and the highest economic value in field crops, is assuming an increasingly important role in studies on plant taxonomy, polyploidization, phylogeny, cytogenetics, and genomics. Here we update and provide a brief summary of the emerging picture of species relationships and diversification, and a set of the designations for individual genomes and chromosomes in Gossypium. This cytogenetic and genomic nomenclature will facilitate comparative studies worldwide, which range from basic taxonomic exploration to breeding and germplasm introgression.

Designations for individual genomes and chromosomes in Gossypium
WANG Kunbo, WENDEL Jonathan F. and HUA Jinping
Journal of Cotton Research. 2018; 1:3.
https://doi.org/10.1186/s42397-018-0002-1