Membrane lipid raft organization during cotton fiber development

Journal of Cotton Research

[Background] Cotton fiber is a single-celled seed trichome that originates from the ovule epidermis. It is an excellent model for studying cell elongation. Along with the elongation of cotton fiber cell, the plasma membrane is also extremely expanded. Despite progress in understanding cotton fiber cell elongation, knowledge regarding the relationship of plasma membrane in cotton fiber cell development remains elusive.

[Methods] The plasma membrane of cotton fiber cells was marked with a low toxic fluorescent dye, di-4-ANEPPDHQ, at different stages of development. Fluorescence images were obtained using a confocal laser scanning microscopy. Subsequently, we investigated the relationship between lipid raft activity and cotton fiber development by calculating generalized polarization (GP values) and dual-channel ratio imaging.

[Results] We demonstrated that the optimum dyeing conditions were treatment with 3 μmol·L− 1 di-4-ANEPPDHQ for 5 min at room temperature, and the optimal fluorescence images were obtained with 488 nm excitation and 500–580 nm and 620–720 nm dual channel emission. First, we examined lipid raft organization in the course of fiber development. The GP values were high in the fiber elongation stage (5–10 DPA, days past anthesis) and relatively low in the initial (0 DPA), secondary cell wall synthesis (20 DPA), and stable synthesis (30 DPA) stages. The GP value peaked in the 10 DPA fiber, and the value in 30 DPA fiber was the lowest. Furthermore, we examined the differences in lipid raft activity in fiber cells between the short fiber cotton mutant, Li-1, and its wild-type. The GP values of the Li-1mutant fiber were lower than those of the wild type fiber at the elongation stage, and the GP values of 10 DPA fibers were lower than those of 5 DPA fibers in the Li-1 mutant.

[Conclusions] We established a system for examining membrane lipid raft activity in cotton fiber cells. We verified that lipid raft activity exhibited a low-high-low change regularity during the development of cotton fiber cell, and the pattern was disrupted in the short lint fiber Li-1 mutant, suggesting that membrane lipid order and lipid raft activity are closely linked to fiber cell development.

[Title] Membrane lipid raft organization during cotton fiber development

[Authors] XU Fan, SUO Xiaodong, LI Fang, BAO Chaoya, HE Shengyang, HUANG Li & LUO Ming

https://doi.org/10.1186/s42397-020-00054-4

Succinate dehydrogenase SDH1–1 positively regulates cotton resistance to Verticillium dahliae through a salicylic acid pathway

Journal of Cotton Research

[Background] Verticillium wilt, caused by the soil-borne fungus of Verticillium dahliae Kleb., is one of the most devastating diseases of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be helpful to control this disease. Previous studies revealed that succinate dehydrogenase (SDH) is involved in reactive oxygen species (ROS)-induced stress signaling pathway that is likely to be triggered by salicylic acid (SA). Here, through the metabolomics and differential expression analyses in wilt-inoculated cotton (Gossypium hirsutum), we noticed that GhSDH1–1gene in cotton may play an important role in the resistance to V. dahlia. Then we reported GhSDH1–1 gene and its functional analysis in relation to the resistance of cotton to V. dahliae.

[Results] The GhSDH1–1 gene in cotton root was significantly up-regulated after V. dahlia inoculation, and its expression level peaked at 12 and 24 h post-infection. SA can also induce the up-regulation of GhSDH1–1. Additionally, the functional analysis showed that GhSDH1–1-silenced cotton was more susceptible to V. dahliae than the control because of the significant decrease in abundance of immune-related molecules and severe damage to the SA-signaling pathway. In Arabidopsis thaliana, high expression of GhSDH1–1 conferred high resistance to V. dahliaeArabidopsis that overexpressed GhSDH1–1 had higher resistance to V. dahliae infection compared with the wild-type.

[Conclusions] Our findings provide new insights into the role of GhSDH1–1; it positively regulates cotton resistance to Verticillium wilt. The regulatory mechanism of GhSDH1–1 is closely related to SA-related signaling pathway.

[Title] Succinate dehydrogenase SDH1–1 positively regulates cotton resistance to Verticillium dahliae through a salicylic acid pathway
[Authors] ZHANG Xiangyue, FENG Zili, ZHAO Lihong, LIU Shichao, WEI Feng, SHI Yongqiang, FENG Hongjie & ZHU Heqin

https://doi.org/10.1186/s42397-020-00052-6