Novel findings and strategies for fiber biotechnology

A negative correlation between fiber quality traits and the key agronomic characteristics such as yield and maturity makes it a challenging task to improve cotton fiber quality traits using conventional breeding.The improvement of key characteristics of fiber quality is one of the major objectives of cotton biotechnology worldwide. Several key findings published lately by several cotton research groups fueled a good evidence and promise for biotechnological improvement of cotton fiber. The report published by Guan et al. 2014 in January issue of Nature communications highlight the role of GhMYB2A and GhMYB2D and its tans-acting regulatory microRNA signatures, miR828 and miR858, in trichome and fiber development. Another report in the same issue of Nature Communications by our group highlighted the involvement of cotton phytochrome gene family in the simultaneous improvement of major fiber characteristics and several important agronomic traits of Upland cotton utilizing RNA interference of the targeted light regulatory gene(s). Recent report of Han et al. in the March issue of Plant Biotechnology journal demonstrated that Phytosulfokine-α (PSK-α) signaling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. Results of all these recent discoveries on regulating novel genetic signatures through transgenomics approaches not only expanded our understanding on the complex cotton fiber development process but also provided novel innovative strategies to improve cotton fiber quality to increase competitiveness of natural fiber over synthetics.

Future threat to Cotton in Pakistan: Red Cotton Bug and Dusky Cotton Bug

Cotton in Pakistan is mainly damaged by number of lepidopteron caterpillars like spotted bollworms, cotton bollworms, pink bollworms, Army worms etc, and mostly cotton growers have limited expertise to manage these worms due to number of reasons like unable to recognize the entire life cycle of insects, non-existence of reliable pest scouting, limited knowledge of pesticides and beneficial insects etc. Since these worms feed on cotton bolls or flowers, they cause direct and great yield losses. It was presumed that pest management is the weakest area of Pakistani cotton grower. With the Introduction of Bt cotton, the bollworms are no longer an issue; the saving of losses caused by worms and converted into yield gain help to raise farm’ income. Elimination of fear of pink bollworm enabled cotton growers to keep cotton crop for longer in fields. On the other hand, insecticides used for the control of bollworms in cotton substantially reduced and resulted in so called “imbalance” of cotton ecosystem. The imbalanced ecology up graded various potential or minor pests to the status of major pests. Cotton mealybug which was attacking cotton and other crops at very lower incidence converted into a major pest in 2008-09, is a good example of it.

Consequent upon the farmers’ complaints of yellow spots on cotton lint and significantly increasing number of rotten or un-opened bolls, the scientists revealed that two sucking pests are responsible for lint coloration. Based on preliminary studies at Central Cotton Research Institute, Multan it was noted that Red cotton Bug and Dusky Cotton Bug, with cell sap feeding habits (insect with needle like mouth) sucks sap from cotton seed. The insects are preferably feed on seed of partially or unopened bolls. While inserting its needle like mouth into cotton seed for feeding and crawling on bolls, the body secrets colored liquid resulting in lint staining with yellow spots. The discolored lint never appreciated by spinners as its fiber is weakened which end up a low quality yarn or textile product. The saliva also carries bacteria which cause the boll rotten. The bolls aspirated by bugs, if managed to open has lighter seeds making higher seed-lint ratio. The seed produced from such bolls has viability and germination issues hence such crop cannot be used for seed production. Not only this, the hole made for the feeding of insect gets fungus infection and seed cake made from such seed has higher aflotoxine contents. Animals refuse to take such feed and since aflotoxine is extracted in milk if fed to milking animals, the milk processing sector refused to accept milk from the dairies using cotton seed cake as concentrate diet. It is worth mentioning here that aflotoxine is carcinogenic in nature and can cause cancer. Both insects are not new to our environment, rather they were surviving and could not make their existence prominent due to management practices adopted for bollworms or other insects.

Red Cotton Bug, scientifically known as Dysdercus cingulatus, is small insect of about 12-14 mm in length, with deep red legs and antennae. The wings are of two parts outer part is membranous and is black in color, where as inner portion is hard & grayish and has black spot. Females lay eggs in crevasse of moist soil and of bright yellow color. Adult do feed on leaves green bolls and partially opened bolls.

Oxycrenus hyalipennis is the Latin name of Dusky Cotton bug. It is very small insect of about 4-5 mm in length. The body is dusky brown in color, legs are deep brown and wings are faded transparent with black spots. Young ones suck sap from immature seed, which do not ripe and remain light in weight. The adults are picked up with picking of seed cotton and crushed during ginning resulted in stained lint and also produce bad smell.

It is quite important to understand that Bt cotton has nothing to do with these insects, it’s the ecosystem where pesticides for Sundies are withdrawn which facilitated the development and rapid multiplication of these bugs. In non-Bt cotton cultivation pesticides applied for Sundies unnoticeably killed these insects as well, so they never appeared as serious pests. This phenomenon is not new to Pakistan, other countries adopted Bt cotton also had similar experiences with varying degree. Cotton scientists have devised a management strategy for these pests and planned a systematic research during the coming years to address various aspects of these and other potential pests including it biology, natural enemies and study of host range. It is also advised to farmers to report their nearest agriculture officer or research institute/ station if they notice any abnormal behavior of crop, insect or disease symptoms. Strong vigilance may prompt the issue before it could cause an economic loss.

 

Dr. Khalid Abdullah

Cotton Commissioner

Ministry of Textile Industry

Government of Pakistan

IslamabadDusky Cotton Bug Red Cotton Bug

HVI Guideline Updated

The ITMF International Committee on Cotton Testing Methods (ICCTM) approved updates to the Guideline for Standardized Instrument Testing of Cotton during its meeting in Bremen, Germany on March 18, 2014. The Guideline is a joint effort by the International Cotton Advisory Committee (ICAC) Task Force on Commercial Standardization of Instrument Testing of Cotton (CSITC) and the ICCTM.

The Guideline provides specific instruction on the conditioning of cotton samples, operation of instruments and instrument testing laboratories and the handling of data in the evaluation of the quality of cotton fiber. The purpose of the Guideline is to assure standardized testing procedures so as to ensure results that are accurate, precise and repeatable and are thus useable by the cotton and cotton textile value chains in both the marketing and use of cotton fiber.

The major changes approved at the ICCTM meeting in Bremen included updates to the basic ASTM reference documents, a recommendation that climate data in each laboratory be averaged over a maximum 5 to15 minute interval, cautionary guidance in the use of rapid conditioning equipment, requirements for the continuous identification of samples handled within laboratories, requirements regarding calibration material, information on within-instrument and inter-instrument variations, information about participation in CSITC Round Trials and recommendations regarding the handling of data by laboratories.

The new version of the Guideline will be available at www.ITMF.org and www.CSITC.org  from April 07 on. It will be translated into Arabic, Chinese, English, French, Portuguese, Russian and Spanish.

Is a modification of the temperature level in cotton testing laboratories suitable?

Cotton testing has to be done under specific climate conditions, which are given in the according standard practices (as ASTM 1776 or ISO 139). Particularly in countries with tropical conditions, it is very difficult and energy-intensive to maintain the required temperature level of 21°C, although temperature shows, compared to the influence of the relative humidity, a low impact on cotton test results – as long as the relative humidity is kept constant. Therefore the ITMF International Committee on Cotton Testing Methods (ICCTM) discussed during its meeting in Bremen, Germany on March 18, 2014, about the influence of temperature on the test results for cotton.

Whereas it is well known that the relative humidity shows a strong influence on cotton test results, the influence of the temperature is not as clear. The conclusions of the committee were:

a) Research should be done to check, if with a different temperature level (e.g. 24°C or even 27°C) the same test result level and the same accuracy of results can be achieved. Furthermore it has to be investigated, how the respective relative humidity has to be adapted – presumably on a level that results in the same moisture content of the cotton fibres as the currently given standard conditions (21°C / 65% relative humidity). At this stage, USDA-AMS, CSIRO in Australia and the Bremen Fibre Institute in Germany promised to investigate on this.

b) The allowed tolerance for temperature variations (1°C in ASTM 1776 or 2°C in ISO 139) should definitely not be widened, as this shows, with given constant total water content of the air, a direct impact on the relative humidity.

The results will be discussed at the next ICCTM meeting, which will take place in Bremen in March 2016.

Climate change from global warming will affect cotton production

There has been much concern worldwide about climate change resulting from global warming and the possible effects on agriculture and human food supply.  Most of the global climate change scenarios include change in the amount and pattern of precipitation,  more restricted water availability, more frequent occurrence of extreme weather events including heat waves, droughts and heavy rainfall, longer growing seasons, and possible changing geographical regions suitable for crop production. These changes will effect agriculture and necessitate adaptive production practices.

Cotton production will be impacted by future climate change.  Although the increased photosynthesis caused by the rising CO2 levels will promote increased biomass production, this will not necessarily translate into higher yields due to the negative impact higher temperatures have on reproductive growth.  However, rising temperatures will lengthen the season available for growing cotton, permitting shifts in planting dates and also permitting cotton to be double-cropped behind other crops in an expanded region. Rising temperatures may also eventually promote the movement of cotton production into more northern regions.

The Chinese policy challenge of making farming and cotton growing economically more attractive

For emerging countries, and to a lesser extent for developing countries, the economic transition is attracting farmers out of agriculture. Farming population is reducing, following the trend that developed countries has known and where farming populations represent a few per cents of total labour.

Although farming populations in emerging and developing countries are still high, governments are showing concern for the threat of missing farmers. In China, this concern is translated into the political question of “who will farm tomorrow in China” for several years and a new policy has been recently set up on an experimental basis.

To people involved in the cotton business, China is well known for ranking first in production, in consumption and in imports. China is clearly a price-maker in the cotton market. From the agronomic perspective, it is worth emphasizing that China has overcome the challenge of feeding and clothing 18.6% of world population while accounting only for 7.0% of world arable land.

Productivity has been key in the above-mentioned status of China; it was the outcome of long term investment in research and in support to technology application by producers, although undesired effects have been observed. In terms of remarkable outcomes in cotton cultivation, plant growth regulation has been in practice for more than two decades; hybrids have been commercially launched in late 1980s and extensively adopted since then; a specific transplanting technique is generalized in cotton provinces of Yangtze River Valley because it enables to grow cotton after winter cereal, making China one of the rare countries where cotton crop in integrated into a double-cropping scheme. In the area of biotechnologies, Chinese researchers have carried out its particular technique of gene transfer through pollen tube in early 1990s; they are handling today a large portfolio of genes, albeit its composition is hard to capture from external observers. However, in terms of undesired effects, the efficiency of over and under fertilizing could be questioned, because of negative economic and environmental impacts. In addition, the cotton seed market has become so messy that producers are paying high prices without certainty of getting quality seeds of the expected varieties.

In China, owing to the vibrant two digit economic growth for almost three decades, agriculture is declining relative to other industries because it is becoming less economically attractive. Its annual growth has been less than 5.0%, although much higher than the population growth rate of less than 0.6% since year 2000. In 2010, agriculture accounted only for 10% of GDP, 37% in employment, and for the first time, there were less people living in rural areas than in cities. The income gap between urban and rural labor has continuously widened since China has committed itself to a market economy: in 2011, the income ratio was 3.6.

With reference to the tiny farm size (0.4 ha on average) and to the rates of durable consumer goods (e.g. 63% of rural households possessing washing machines), the fate of Chinese farmers is much better than the one encountered in many emerging and developing countries, but this is the outcome of large scale of commitment in off-farm activities. Farm heads, i.e. men in Chinese context, firstly involved, followed later on by their sons so that agriculture has been perceived as aging and feminized although more recently daughters are catching up in committing to off-farm activities. Because cotton growing is more demanding in terms of labour and cash flow –while labour cost has substantially increased– the phenomenon of moving out of agriculture could be exacerbated in some areas. Our surveys in Hebei province, a traditional cotton producing province, show that farmers’ children are seldom involved in farming activities, hence raising the issue of who would take over farming in the next future.

The concern of maintaining some rate of farming people in China –although what this rate should be is not yet clarified, to my knowledge–, asks for reversing the trend of income disadvantage to farmers and more globally for restructuring the agricultural sector; but such a process will need time because several particular and structural features could only evolve gradually. One major feature is related to the residential registration scheme –or “Hukou”– which distributes Chinese people between urban and rural status according to their places of birth, if not the birth places of their parents. A Chinese citizen can seldom shift from one status to the other, notably from rural to urban. Consequently, most rural people migrating more or less temporarily to cities cannot enjoy welfare schemes there –while these schemes are usually missing in their rural hometowns. A second major feature results from the public ownership of land through which only land use right has been allocated to farming families (for 30 years) including to those which have actually given up farming and which are renting out land informally. Dramatic changes have already taken place, but a lot remain: primary and secondary school has been made free in rural areas since 2006; all taxes on farming have been waived in 2007; and in November 2013, for the first time, the revision of the “Hukou” system has been mentioned at the highest political level. The issues of upgrading health care and setting up a pension scheme for farmers are still overlooked.

The Chinese government has started coping with the issue of “who will farm in China” in 2007. In 2012, it introduced the concept of rural and city integration though a “blue book” which has been updated in 2013. In short, this concept points out that development in rural communities and cities does not imply similar economic model. More specifically, such model in rural areas should take jointly agriculture, farmers and rural communities into account.

In the framework of this integration concept, China has launched an experimental program of “family farmers”. The introduction I made in an open session at the last 72nd ICAC Plenary session is attached below, as well as the analysis by one panelist which gave some international perspective from the Chinese case.

Similar programs might be conducted elsewhere; all cotton producing countries would benefit from getting informed of.

Seedling diseases

After an absence of many years, several occurrences of seeding diseases have been observed in South Africa. During prelimanary investigations it came to light that low soil and air temperatures during planting might have been part of the problem.

ICAC Cotton Researcher of the Year 2013

The International Cotton Advisory Committee (ICAC) is inviting applications for the “ICAC Cotton
Researcher of the Year 2013.” The closing date for receipt of applications is March 31, 2013. All
information about the program is available at http://icac.org/technical-information/researcher-of-
the-year.

Applications should only be sent to the following address: nominations2013@icac.org.

A team of six judges handles the evaluation process. The judges are anonymous to the ICAC and
change every two years. Applications go directly to the panel of judges. Researchers from
universities and public sector research organizations are eligible to apply.

The ICAC awards the winner with a shield, an honorarium of US$1,000.00, a certificate, and the
title “ICAC Cotton Researcher of the Year.” The winner will be invited to make a special
presentation at the 72nd Plenary Meeting of the ICAC to be held in Cartagena, Colombia from
September 29 to October 4, 2013.